Addition Reactions of Heterocyclic Compounds. Part XLIX. ${ }^{1}$ Reactions of Benzimidazoles Possessing an Activated 2-Methylene Group with Acetylenic Esters

By R. M. Acheson " and M. S. Verlander, Department of Biochemistry, South Parks Road, Oxford OX1 3QU

Abstract

Benzimidazole-2-acetonitrile, ethyl benzimidazole-2-acetate, and their 1-methyl derivatives were heated with methyl propiolate and with dimethyl acetylenedicarboxylate in acetonitrile. The resulting mixtures, on chromatography gave pyrrolo-, pyrido-, and azepino-[1,2-a]benzimidazoles, the structures of which were deduced from their spectral properties.

As an extension of previous studies of the reactions of benzimidazoles with dimethyl acetylenedicarboxylate,, ${ }^{2,3}$ the reactions of this ester and of methyl propiolate with some substituted benzimidazoles carrying an activated 2-methylene group have been investigated. A particular point of interest was to see if the site of the initial nucleophilic activity of the benzimidazole could be moved from the 3 -nitrogen atom to the 2 -methylene group, as has been demonstrated for ethyl benzothiazole2 -pyruvate and for methyl benzoxazole-2-pyruvate. ${ }^{2}$ As the availability of protons, ${ }^{4}$ such as the 1 -proton of a benzimidazole, can affect the courses of reactions involving acetylenic esters, ${ }^{3}$ it was also necessary to examine the behaviour of both the 2 -substituted benzimidazoles and their 1 -methyl derivatives.

The reactions investigated usually gave mixtures, which were separated chromatographically; the common types of products are described first. Since the completion of our work Finch and Gemenden have reported ${ }^{5}$ only the formation of the appropriate pyridobenzimidazoles [cf. structure (20)] from dimethyl acetylenedicarboxylate and the benzimidazoles (1), (2), and (3) in dimethylformamide. They do not appear to have examined their reaction mixtures chromatographically. Our rather different results, illustrated by the observation of compounds (16), (24), and (36), instead of (20) as products from benzimidazole-2-acetonitrile, with acetonitrile as solvent, emphasise the importance of conditions in this type of reaction.

Treatment of the benzimidazoles (1), (3), and (4) with methyl propiolate and of (2), (3), and (4) with dimethyl acetylenedicarboxylate in refluxing acetonitrile gave the 1,5 -dihydropyrido $[1,2-a]$ benzimidazoles (5)-(10), \dagger but corresponding compounds could not be isolated from reactions of the benzimidazoles (1) and (2) with the dicarboxylic ester and with methyl propiolate, respectively. The mass spectra of the pyridobenzimid-

[^0]azoles (6)-(8) and (10) all show weak molecular ion peaks, with the base peaks corresponding to the loss of one of the substituents from the 1 -position. An ester group is preferentially eliminated from compounds (6),

(8), and (10) to give a stable aromatic cation as in the similar fragmentation of the pyridobenzimidazole (11). ${ }^{2}$ The u.v. spectra of compounds (5)-(10) (Table 2) are similar and show a partial or virtually complete change to the benzimidazolium chromophore on acidification of

[^1]the solution, indicating protonation at position 4 to give a species such as (12). The spectrum of compound $(11)^{2}$ is a little different, but this may be due to the greater possibility of resonance interaction involving the 4 -substituents and the imidazole ring in compounds (5)-(10) to give a species such as (14). Such resonance is also suggested by the abnormally low $\mathrm{C} \equiv \mathrm{N}$ stretching frequencies ($2190-2000 \mathrm{~cm}^{-1}$) in the i.r. spectra of compounds (5), (7), and (8) compared with the value of $2232-2218 \mathrm{~cm}^{-1}$ normally found for conjugated nitriles. ${ }^{6}$ Abnormally low frequency carbonyl absorptions (1660$1670 \mathrm{~cm}^{-1}$) in the i.r. spectra of compounds (6), (9), and (10) suggest a similar resonance involving the 4 -ethoxycarbonyl group. The chemical shifts (Table 1) of the 1 -proton and the 1 -methylene protons for compounds (5), (7), and (9) compare well with those of the similarly situated protons at the 4 -position of the isoquinoline derivative (13). ${ }^{7}$ The trans-configuration of the double bond hydrogen atoms of the 5 -acrylate group in compound (5) is established by their large coupling constant. Compounds (5)-(11) could be formed from the benzimidazoles as indicated, nucleophilic attack taking place

(12)

(13)
first from position 3, and then from the methylene group at position 2 of the heterocyclic ring.

A number of pyrido $[1,2-a]$ benzimidazoles (15)-(19) were also isolated from the same reaction mixtures. The n.m.r. spectra for compounds (15)-(18) are consistent with the 3 -oxo- rather than the 1 -oxo-pyrido-$[1,2-a]$ benzimidazole structure [e.g. (19), (20),5 and $\left.(21)^{5}\right]$. The absence of a deshielded aromatic proton in the spectra of compounds (15), (17), and (18) (Table 1) indicates that a peri-deshielding group is not present at position 1, since the 9 -proton signal appears at $\tau 1.19$ in compound (19) (Table 1), at 1.50 in (20), ${ }^{5}$ and at 1.36 in (22). ${ }^{2}$ The absence of a single-proton resonance attributable to the 5 -proton in compound (16) may be due to line broadening, to equilibrium between the possible ' keto ' (16) and 'enol ' (23) forms, or to exchange with the solvent (hexadeuteriodimethyl sulphoxide). However, the very broad i.r. absorption ($3250-2500 \mathrm{~cm}^{-1}$) confirms the presence of a strongly hydrogen-bonded $\mathrm{O}-\mathrm{H}$ or $\mathrm{N}-\mathrm{H}$ group. The low-field position ($\tau 1 \cdot 11$ $1 \cdot 20$) of the 1 -proton signals in the spectra of the pyrido benzimidazoles (15), (17), and (18) may be attributable

[^2]to a measure of positive charge on the imidazole ring arising from resonance interaction involving this ring and the 3 -carbonyl group. In support of this the i.r.

(14)

(19) 4-CN-5-trans-CH:CHE
(22)
(20) $3-E-4-C N$
(21) 3-E-4-CN-5-Me
spectra all show abnormally low frequency carbonyl absorptions ($1647-1655 \mathrm{~cm}^{-1}$), characteristic of pyridone carbonyl groups. ${ }^{8}$ The $\mathrm{C} \equiv \mathrm{N}$ stretching frequencies for compounds (15) and (16) are 'normal' for conjugated nitriles, suggesting that the major resonance interaction is between the imidazole ring and the 3 -carbonyl group. The u.v. spectra of compounds (15)-(18) (Table 2) are distinct from those of (20) and (21), prepared by treatment of the benzimidazoles (1) and (3) with dimethyl acetylenedicarboxylate in dimethylformamide. ${ }^{5}$ A mechanistic scheme which accounts for the formation of the pyridobenzimidazoles (15)-(18) has been suggested for the formation of structurally similar quinolizones from pyridines. ${ }^{9,10}$

The 1 -oxopyrido $[1,2-a]$ benzimidazole (19) was isolated in low yield from the reaction of benzimidazole-2-acetonitrile (1) with methyl propiolate. The low-field aromatic proton signal ($\tau 1 \cdot 19$) shows the presence of a peri-deshielding group at the 1 -position and is at similar field to that of the 9 -proton in compound (20); ${ }^{5}$ other analogies are available. ${ }^{2}$ The chemical shifts of the 3 - and 2 -protons (Table 1) are close to those of the 4 - and 5 -protons ($\tau 2.66$ and 3.45 , respectively) in 1 -methyl-6-oxopyridine-3-carbonitrile. ${ }^{11}$ The u.v. spectrum of compound (19) generally resembles that of (21) ${ }^{5}$ (Table 2), and the $\mathrm{C} \equiv \mathrm{N}$ frequency in the i.r. is ' normal ' for a conjugated nitrile, suggesting that the major resonance interaction of the imidazole ring is with the 1 -carbonyl group, whose frequency is correspondingly lowered ($1686 \mathrm{~cm}^{-1}$). The mass spectrum shows the

[^3]molecular ion as base peak. The pyridobenzimidazole (19) is probably formed via a nucleophilic addition to the ester by the activated 2 -methylene group, followed by cyclisation on to the ring nitrogen atom. A similar type of cyclisation has been observed in the pyridine series. 9,10

The azepino $[1,2-a]$ benzimidazole (24) was isolated from the reaction of benzimidazole-2-acetonitrile (1) with dimethyl acetylenedicarboxylate. Its n.m.r. and u.v. spectra are similar to those of compound (25) ${ }^{3}$ (Tables 1 and 2), although the retention of the long wavelength absorption in strong acid solution suggests that in contrast to $(25)^{3}$ protonation does not occur at

(23)

(24) 6-CN-10-E
(25) 5-Me-10-E
(26) 5-Me-6-E-10-CN
(27) $5-\mathrm{Me}-6-\mathrm{Ph}-10-\mathrm{E}$
(28) 5-Me-6-CN-10-E

(29)

(30)

The u.v. spectrum is closely similar to that of compound $(27)^{2}$ (Table 2), and in acid solution both compounds show the benzimidazolium chromophore, protonation presumably having taken place at position 6. Structure (26) is distinguished from its isomer (28) by the mass spectrum, which shows loss of 111 mass units to give the base peak. This is consistent with the loss of methyl 3 -cyanoacrylate, formed from the 9 - and 10 -carbon atoms with their associated substituents, to give the stable pyrrolobenzimidazole species (29) in an analogous way to the suggested loss of methyl acrylate, crotonate, and cinnamate from dihydroazepinoquinoline derivatives to give base peaks corresponding to the appropriate pyrroloquinolines. ${ }^{12,13}$ The attachment of the 10 -cyano-group to a saturated carbon atom in compound (26) is supported by a weak i.r. absorption at $2250 \mathrm{~cm}^{-1}$, the low intensity of the absorption also being consistent with the presence of several oxygenated functions in the molecule. ${ }^{14}$ The high frequency ester carbonyl absorption ($1769 \mathrm{~cm}^{-1}$) is characteristic of a saturated ester group and is assigned to that at the 9 -position. In the n.m.r. spectrum there is a high field AB system ($\tau 6.30$ and $5 \cdot 44, J 9.8 \mathrm{~Hz}$) assigned to the 9 - and 10 -protons, corresponding to a similar system ($\tau 5.50$ and 4.36 , $J 3.5 \mathrm{~Hz}$) in compound (27) ${ }^{2}$ where the somewhat different substituents cause the variations between the spectra. The changes in chemical shifts from those of the $9-(\tau 6 \cdot 49)$ and 10 -protons ($6 \cdot 49$ and $7 \cdot 27$) of the analogue (30) ${ }^{15}$ when the highest field proton is replaced by a cyano-group would be expected ${ }^{16}$ to result in τ values of $6 \cdot 30$ and $5 \cdot 50$, respectively, in good agreement with those observed for compound (26). The rather low-field position ($\tau 5 \cdot 85$) of the 5 -methyl signal may be due to resonance interactions developing a positive charge on the 11-nitrogen atom [cf. (14)], although Dreiding models suggest that this group may also be deshielded by the 6 -ester group. The formation of compound (26) could occur through a spiro intermediate, as suggested for the formation of similar azepine derivatives from 2 -ethylquinolines. ${ }^{13}$

Another compound isolated from the reaction of the benzimidazole (4) with dimethyl acetylenedicarboxylate has been assigned the pyrrolo $[1,2-a]$ benzimidazole structure (31)* on the basis of its very close spectral similarity to compound (32). ${ }^{2,3}$ A possible route (illustrated) for the formation of (31) requires the loss of hydrogen in an aromatisation step.

A second compound isolated from the reaction of the benzimidazole (2) with methyl propiolate has been formulated as the benzimidazol-2-one derivative (33). Its n.m.r. spectrum is completely symmetrical, the four-proton aromatic region appearing as an $\mathrm{A}_{2} \mathrm{~B}_{2}$ system and the two two-proton doublets ($\tau 1.93$ and $3 \cdot 28$) being assigned to the acrylate protons. The u.v. spectrum of this compound (Table 2) is very similar to

[^4]those of (34) ${ }^{17}$ and (35). ${ }^{18}$ Like the benzimidazolone (35), compound (33) also shows an abnormally high frequency carbonyl absorption ($1753 \mathrm{~cm}^{-1}$) in the i.r., assigned to the strained ring carbonyl group.

Two similar 1:3 molar adducts, isolated from the reactions of the benzimidazoles (1) and (2) with dimethyl acetylenedicarboxylate, have been provisionally assigned structures (36) and (37). Both have low-field aromatic

(36) $4-\mathrm{CN}$
(37) $4-\mathrm{CO}_{2} \mathrm{Et}$
n.m.r. signals $(8-H, \tau 1.59$ and 1.41 , respectively; Table 1), consistent with the peri-deshielding of proton 8 by the 6 -ester group, as shown for the 10 -hydrogen atom of compound (38). ${ }^{19}$ No such deshielding would be expected for the ester at the 1 -position, since it is attached to a saturated carbon atom and will therefore lie out of the plane of the benzene ring. Both compounds (36) and (37) show mid-field AMX systems whose chemical shifts ($\tau 4 \cdot 80-5 \cdot 44$) (Table 1) are similar to

[^5]
Table 1

N.m.r. spectra (100 MHz ; τ values, J in Hz) for solutions in deuteriochloroform with tetramethylsilane as internal reference

Compd.
(5) $\quad \mathrm{ArH}_{4}, \quad 2 \cdot 2-2.7(\mathrm{~m}) ;$ vinyl $1-\mathrm{H}, 6 \cdot 10,6 \cdot 18,6 \cdot 45$ 1.33(d); vinyl 2-H, 3.55(d) (J 14.2); $3-\mathrm{H}, 2.48$; $1-\mathrm{H}, 3.92(\mathrm{t})$; $1-\mathrm{CH}_{2}$, $7.24(\mathrm{~d}) ; J_{1.1} \mathrm{CH}_{2} 5 \cdot 2$
(6) ${ }^{a} \mathrm{ArH}, \quad 2 \cdot 2-2 \cdot 4(\mathrm{~m}) ; \quad \mathrm{ArH}_{3}, \quad 2 \cdot 5-6.24,6.24,6.38$, $2.7(\mathrm{~m}) ; \quad 4$-ester, $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2}, \quad 8.79(\mathrm{t}), \quad 6.58$ $\mathrm{CH}_{3}{ }^{\circ} \mathrm{CH}_{2}, \quad 5.81(\mathrm{q}) \quad(J 7) ; \quad 1-\mathrm{CH}_{2}$, 6.45 (d) and $6.82(\mathrm{~d}), J 14.8$
(7) $\quad \mathrm{ArH}_{4}, 2.4-2.85(\mathrm{~m}) ; 5-\mathrm{Me}, \quad 6.04 ; 6.22,6.47$ $3-\mathrm{H}, 2.47$; $1-\mathrm{H}, 3.95(\mathrm{t})$; $1-\mathrm{CH}_{2}$, 7.27(d); $J_{1.1-\mathrm{CH}_{2}} 5 \cdot 1$
(8) $\quad \mathrm{ArH}_{4}, 2.6-3 \cdot 2(\mathrm{~m}) ; \quad 5-\mathrm{Me}, 5.92 ; 6.14,6.20,6.25$,
(9) $\mathrm{ArH}, 2.3-2.55(\mathrm{~m}) ; \quad \mathrm{ArH}_{3}, 2.67 ;{ }^{c} \mathbf{6} .18,6.49$ 5 -Me, 6.17; 4-ester, $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2}, 8.5-$ $8.8(\mathrm{~m}), \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}, \quad 5 \cdot 73(\mathrm{q}) \quad(J \quad 7 \cdot 2)$; $3-\mathrm{H}, 1.83$; $1-\mathrm{H}, 3.91(\mathrm{t})$; $1-\mathrm{CH}_{2}$, $7 \cdot 05-7.5(\mathrm{~m}), J 14.2$ and 5.2
(10) $\quad \mathrm{ArH}_{4}, \quad 2.7-3.2(\mathrm{~m}) ; \quad 5-\mathrm{Me}, 5 \cdot 96$; 6.22, 6.26, 6.60, 4-ester, $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2}, 8.70(\mathrm{t}), \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}, \quad 6.62$ 5.87(q) (J 7); $1-\mathrm{CH}_{2}, 6.85$
(15) ${ }^{a} \quad \mathrm{ArH}_{2}, 1.7-2.15(\mathrm{~m}) ; \quad \mathrm{ArH}_{2}, 2.3-6.18$ $2.6(\mathrm{~m})$; vinyl 1-H, $1.40(\mathrm{~d})$; vinyl $2-\mathrm{H}, 3.32(\mathrm{~d})(J 13.9) ; 2-\mathrm{H}, 3.46(\mathrm{~d})$; 1-H, 1-17(d); $J_{1.2} 8 \cdot 1$
(16) ${ }^{a} \mathrm{ArH}_{3}, 2.2-2.7(\mathrm{~m}) ; 9-\mathrm{H}, 1.37(\mathrm{~m}) ; 6.05$ $2-\mathrm{H}, 3 \cdot 47$
(17) $\quad \mathrm{ArH}_{4}, 2 \cdot 1-2 \cdot 65(\mathrm{~m})$; vinyl $1-\mathrm{H}, \quad 6.00,6 \cdot 10$ 1.94(d); vinyl 2-H, $3.65(\mathrm{~d})$ (J 14); 4-H, 3.37; 1-H, 1•11
(18) $\quad \mathrm{ArH}_{4}, 2.2-2.8(\mathrm{~m}) ; 4-\mathrm{H}, 3.81 ; 1-\mathrm{H}, 6.02$ 1.20 ; $5-\mathrm{Me}, 6.42$
(19) a $\quad \mathrm{ArH}, \quad 1 \cdot 9-2 \cdot 1(\mathrm{~m}) ; \quad \mathrm{ArH}_{2}, \quad 2 \cdot 2-6.15$ $2.6(\mathrm{~m}) ; 9-\mathrm{H}, 1.19(\mathrm{~m})$; vinyl $1-\mathrm{H}$. $1 \cdot 40(\mathrm{~d})$; vinyl $2-\mathrm{H}, \mathbf{3 \cdot 2 4 (\mathrm { d })}$ (J 14); $3-\mathrm{H}, 2.05(\mathrm{~d}) ; 2-\mathrm{H}, 3.70(\mathrm{~d}) ; J_{2.3} 9$
(24) ${ }^{\text {a }} \mathrm{ArH}, \quad 2 \cdot 2-2 \cdot 4(\mathrm{~m})$; \quad ArH $_{3},{ }_{2} \cdot{ }_{2} \cdot 4-6 \cdot 24,6.33,6 \cdot 39$, $2.8(\mathrm{~m}) ; 9-\mathrm{H}, 4.75(\mathrm{~d}) ; 10-\mathrm{H}, 3.50(\mathrm{~d}) ; 6.55$ $J_{9.10} 5 \cdot 8$
(25) ${ }^{b}{ }^{\mathrm{ArH}_{4}} \mathrm{ArH}_{4}, 2.8-2.95(\mathrm{~m}) ; \quad 5-\mathrm{Me}, 6.59 \cdot d \quad 6.15,6.26,6.31$, $6-\mathrm{H}, 5.55 ; \quad 9-\mathrm{H}, \quad 4.53(\mathrm{~d}) ; \quad 10-\mathrm{H}, \quad 6.47$ 4.05(d) ; $J_{9.10} 6$
(26) $\quad \mathrm{ArH}_{4}, 2.85$; $^{c} \quad 5-\mathrm{Me}, 5 \cdot 85 ; 9-\mathrm{H}, 6.16,6.16,6.25$, $6.30(\mathrm{~d}) ; 10-\mathrm{H}, 5.44(\mathrm{~d}) ; J_{9,10} 9.8 \quad 6.33$
(31) $\mathrm{ArH}_{3}, 2 \cdot 4-2 \cdot 8(\mathrm{~m}) ; \quad 3$-ester, $\mathrm{CH}_{3}-\quad 6.01,6.07$ $\mathrm{CH}_{2}, 8.64(\mathrm{t}), \mathrm{CH}_{3} \cdot{ }^{-} \mathrm{CH}_{2}, 5 \cdot 67(\mathrm{q})(\mathrm{J} 7 \cdot 2)$; $8-\mathrm{H}, 1 \cdot 20(\mathrm{~m}) ; 4-\mathrm{Me}, 5 \cdot 78^{\text {a }}$
(33) $\quad \mathrm{ArH}_{4}, 2 \cdot 4-2 \cdot 7(\mathrm{~m}) ;$ vinyl $2 \times 1 \cdot \mathrm{H}, \quad 6.14,6.14$ 1.93 (d); vinyl $2 \times 2-\mathrm{H}, 3.28(\mathrm{~d})(J$ 14.5)
(36) a $8-\mathrm{H}, 1.59(\mathrm{~m}) ; \quad 9-\mathrm{H}, 10-\mathrm{H}, 2.35-6.07,6.15,6.31$, $2.6(\mathrm{~m}) ; 11-\mathrm{H}, 2.11(\mathrm{~m})$; $1-\mathrm{H}, 5.12(\mathrm{~d})$; 6.41, $6.52,6.57$ $2-\mathrm{H}, 5 \cdot 01(\mathrm{q}) ; 3-\mathrm{H}, 5 \cdot 44(\mathrm{~d}) ; J_{1.2} 10 \cdot 4$; $J_{2,3} 6 \cdot 2$ 4 -ester, $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2}, 8.56(\mathrm{t}), \mathrm{CH}_{3} \cdot \mathrm{CH}_{2}, \quad 6.07,6 \cdot 12,6 \cdot 31$, $5 \cdot 45(\mathrm{q})(J 7 \cdot 0) ; 8-\mathrm{H}, 1.41(\mathrm{~m}) ; 9-\mathrm{H}, \quad 6.39,6.40,6.41$ $10-\mathrm{H}, 2.4-2.7(\mathrm{~m})$; $11-\mathrm{H}, 2.09(\mathrm{~m})$; $1-\mathrm{H}, \quad 5.0(\mathrm{~d}) ; 2-\mathrm{H}, \quad 4.80(\mathrm{q}) ; 3-\mathrm{H}$, 5•44(d) ; $J_{1.2} 9 \cdot 7 ; J_{2.3} 7 \cdot 25$
(38) ${ }^{6} \mathrm{ArH}_{3}, 2.4-3.0(\mathrm{~m}) ; 2-\mathrm{H}, 3-\mathrm{H}, 5.59-6.21,6.21,6.25$, $6.03(\mathrm{~m})$; $\quad 1-\mathrm{H}, \quad 4.75(\mathrm{~m}) ;{ }^{f} \quad 10-\mathrm{H}, \quad 6.28,6.31,6.39$ $1 \cdot 19(\mathrm{~d}) ;{ }^{g} \quad 5-\mathrm{H}, 6-\mathrm{H}, 6.4-6.75(\mathrm{~m})$; $5-\mathrm{H}, 7 \cdot 52(\mathrm{~m})^{h}$
${ }^{a}$ In hexadeuteriodimethyl sulphoxide. ${ }^{b}$ Ref. 3. ${ }^{c}$ Apparent singlet. ${ }^{d}$ Possibly this assignment should be interchanged with an ester methyl. ${ }^{e}$ Ref. 19. ${ }^{f}$ Centre of apparent quartet. ${ }^{g}$ Signs of further splitting. ${ }^{n}$ Centre of six-line multiplet.

[^6]
Table 2

U.v. absorption spectra

Compd. (5)	Solvent*	m
	M	$\begin{aligned} & 213(3.25), 242(2 \cdot 42), 259(2 \cdot 33), 280(2 \cdot 64), \\ & 293 \text { infl }(1 \cdot 71), 428(3.38) \end{aligned}$
	P	$\underset{(0 \cdot 49)}{206(3 \cdot 12), 268 i n f(1 \cdot 87), ~} 282(1 \cdot 96), 365$
(6)	M	$\begin{aligned} & 211(1.82), 217 \mathrm{infl}(1.72), 225 \mathrm{infl}(1.56), 248 \\ & (1.51), 308(3.84), 412(1.95) \end{aligned}$
	P	$\begin{aligned} & 215 \text { infl (1.77), 247 (0.84), } 265 \quad(0.66), 273 \\ & (0.70), 281(0.66), 307(1.18) \end{aligned}$
(7)	M	$\begin{aligned} & 211 \mathrm{infl}(1 \cdot 83), 220(2.37), 248(1 \cdot 73), 262 \mathrm{infl} \\ & (1 \cdot 16), 298 \cdot 5(2 \cdot 06), 409(2 \cdot 19) \end{aligned}$
	P	$216 \mathrm{infl}(1 \cdot 92), 276$ (1-87)
(8)	M	$21 \operatorname{linfl}(1.23), 228$ (1.98), 283 (3.64), 314infl $(1 \cdot 27), 323(1 \cdot 66), 400(0.32)$
	P	233 ($1 \cdot 43$), 268 ($1 \cdot 18$), 287 ($1 \cdot 29$), 305 infl (0.83), 32 linfl (0.70)
(9)	M	$\begin{aligned} & 213(2 \cdot 42), \underset{(250}{25 \cdot 22)} \\ & (1 \cdot 29), 273 \mathrm{infl}(0 \cdot 69), 315 \end{aligned}$

(10) M $\quad 208(1.78), 228(1.55), 286(2.68), 330(1.98)$,
 (0.99)
(11) $a \quad \mathrm{M} \quad \underset{\substack{200 \mathrm{inf} \\(1.52), 480(1 \cdot 78)}}{(3 \cdot 24), 275}(1 \cdot 60), 281 \quad(1 \cdot 55), 315$
(15) \quad M $\quad 211(2 \cdot 47), 249(4 \cdot 18), 256 \mathrm{infl}(3 \cdot 25), 274$
(1.95), $283(1 \cdot 88), 318(2 \cdot 19)$

P $\quad 212(3.08), 249(2 \cdot 99), 261(2 \cdot 76), 282(2 \cdot 11)$,
M $\quad 211(1 \cdot 93), 230 \mathrm{infl}(1 \cdot 36), 270(2 \cdot 94), 283 \mathrm{infl}$
$\begin{array}{lll}(16) & \mathrm{M} & \begin{array}{l}211(1.93), 230 \mathrm{infl}(1 \cdot 36), 270(2 \cdot 94), 283 \mathrm{infl} \\ \\ \\ \mathrm{P}\end{array} \\ & \begin{array}{l}(2.58), 308 \mathrm{infl}(0.99), 416(0.84)\end{array} \\ & \end{array}$ (3.52), 291 infl (1-24), 390 ($1 \cdot 04$)
(17) M $\quad 211(2 \cdot 45), 219 \mathrm{infl}(2 \cdot 24), 259(4 \cdot 29), 280 \mathrm{infl}$
$P \quad(1 \cdot 96), 290 \mathrm{infl}(1 \cdot 67), 327$ (2.37)
P $\quad 220 \mathrm{infl}(2 \cdot 02), 251$ (3.41), 262 (3.14), 275 (2.78), 329 (1.57)
(18) M $\quad \begin{aligned} & 212(2.61), 230(2.20), 261 \\ & (0.94), 315(1 \cdot 22), 336(0.94)\end{aligned} \quad(4 \cdot 70), 306 \mathrm{infl}$

P $\quad 210 \mathrm{infl}(1 \cdot 20), 217(1 \cdot 30), 258 \mathrm{infl} \quad(1 \cdot 93)$, 267 (2.04), 307 (0.59), 316inf ($0 \cdot 57$)
(19) M $211(2.57), 224(2.90), 258(2 \cdot 36), 281(2 \cdot 10)$, $358 \mathrm{infl}(1 \cdot 85), 371(2 \cdot 46), 400(0 \cdot 29)$
P $\quad 242(2.73), 259(2.43), 269 \mathrm{infl}(2.13), 304$ (0.50), $354 \mathrm{infl}(1 \cdot 70), 365(2 \cdot 10)$, 402 infl (0.23)
(24) M $\quad 208$ (1.71), 224 (1.78), 250 (1.26), 288infl $\mathrm{P} \quad 222(2 \cdot 20), 248 \mathrm{infl}(1 \cdot 12), 295(0 \cdot 54), 370$ (1.04)
(26) M $\quad 209 \mathrm{infl}(0.87), 230(1.64), 264(0.75), 340$

MA 211 (1.62), $268 \mathrm{infl}(0.77), 274$ (0.91), 282
$(31)^{b} \quad \mathrm{M} \quad 216(2 \cdot 83), 248(3.27), 292(2 \cdot 57), 332 \cdot 5$ (2.05)
$(33)^{\boldsymbol{b}} \quad \mathrm{M} \quad 210(2 \cdot 56), 238 \cdot 5(3 \cdot 35), 284(4 \cdot 10)$
(34) ${ }^{\text {c }} \quad \mathrm{E} \quad 222.5(0.72), 280(0.75)$
$(35)^{d} \quad \mathrm{M} \quad 228(1 \cdot 50), 280(1 \cdot 63)$
(36) M $209(2 \cdot 24), 21 \operatorname{sinfl}(1 \cdot 45), 24 \operatorname{linfl}(0.59)$, 344 (1-62)
P $\quad 211 \mathrm{infl}(1.99), 245 \mathrm{infl}(0.67), 342(1.57)$
(37) M $210(2 \cdot 13), 220 \mathrm{infl}(1 \cdot 53), 243 \mathrm{infl}(0.62)$, 343 ($1 \cdot 76$)
P $\quad 211 \mathrm{linfl}(2.62), 244 \mathrm{infl}(1.07), 254 \mathrm{infl}(0.83)$, 343 (2.56)

[^7]${ }^{a}$ Ref. 2. ${ }^{b}$ No change on acidification. ${ }^{c}$ Ref. 17. ${ }^{d}$ Ref. 18.
those found for the $1-, 2$-, and 3 -protons of compound (38) (Table 1) where the 3 -proton is at relatively high field because it is the β-hydrogen atom of an enamine system with respect to two nitrogen atoms. The u.v. spectra of compounds (36) and (37) (Table 2) resemble

(38)

(39)
that of compound (39). ${ }^{20}$ Compounds of type (36) have also been obtained from other benzimidazoles, and their formation will be discussed in a later paper.

EXPERIMENTAL

The instruments and general procedures used have been described previously. ${ }^{1}$ Chromatography was performed on deactivated alumina. ${ }^{1}$ Details of the i.r. and mass spectra and details of the chromatography are available. ${ }^{15} \dagger$ The methyl propiolate prepared as described ${ }^{21}$ had b.p. $100-$ 101° at 760 mmHg . $\quad \mathrm{N}$-Methyl-2-nitroaniline was obtained by the method of Hempel ${ }^{22}$ as large red needles, m.p. 34° (lit., ${ }^{23} 35^{\circ}$); reduction of this with zinc dust and aqueous ethanolic sodium hydroxide ${ }^{24}$ gave N-methyl-1,2-phenylenediamine ($90-93 \%$), b.p. $138-145^{\circ}$ at 20 mmHg (lit., ${ }^{25}$ 116-120 0° at 8 mmHg ; different synthetic method). Benzimidazole-2-acetonitrile (1) (50%), m.p. $210-212^{\circ}$, and ethyl benzimidazole-2-acetate (2) (70%), m.p. 128- 129°, were prepared by the literature method; ${ }^{26}$ their 1-methyl derivatives (3), m.p. $131-132^{\circ}$ (lit., ${ }^{27} 132-134^{\circ}$; different method), and (4), m.p. 64° (lit., ${ }^{27}$ m.p. $60-62^{\circ}$; different method), were obtained by replacing the 1,2 -phenylenediamine in the published procedure ${ }^{26}$ by N-methyl-1,2-phenylenediamine.

Benzimidazole-2-acetonitrile with Methyl Propiolate.(i) Benzimidazole-2-acetonitrile (1) (6 g) and methyl propiolate (9.5 g) were refluxed in acetonitrile (150 ml) for 12 days. Evaporation gave a tarry solid which, on treatment with methanol, deposited methyl 4-cyano-3,5-dihydro3 -oxopyrido $[1,2$-a]benzimidazole-5-trans-acrylate (15) (1.34 g), pale yellow crystals (from methanol), m.p. 269-271 ${ }^{\circ}$, resolidifying above the m.p. and re-melting above 310°

[^8](decomp.) (Found: $\mathrm{C}, 65 \cdot 3 ; \mathrm{H}, 3.8 ; \mathrm{N}, 14 \cdot 2 . \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, $65 \cdot 5 ; \mathrm{H}, 3 \cdot 8 ; \mathrm{N}, 14 \cdot 3 \%$), $\nu_{\text {max }} 2214,1716,1647$, 1625 , and $1600 \mathrm{~cm}^{-1}$.

Chromatography of the remainder and elution with light petroleum-benzene ($1: 1 \mathrm{v} / \mathrm{v}$) gave a yellow oil which yielded methyl 4-cyano-1,5-dihydro-1-oxopyrido[1,2-a]benz-imidazole-5-trans-acrylate (19) ($25 \mathrm{mg}, 0.16 \%$), yellow crystals (from methanol), m.p. 263-266 ${ }^{\circ}$ (Found: C, $65 \cdot 4$; $\mathrm{H}, 3.8 . \quad \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 65.5 ; \mathrm{H}, 3.8 \%$), $\nu_{\text {max }}$ 2222, 1733, 1686, 1656, and $1619 \mathrm{~cm}^{-1}, m / e 293\left(M^{+}, 100 \%\right)$, 265 $(M-\mathrm{CO}, 2 \cdot 0), 262(M-\mathrm{OMe}, 9 \cdot 5)$, and $234\left(M-\mathrm{CO}_{2} \mathrm{Me}\right.$, 17), $m^{*} 240$, and $187(293 \rightarrow 265$ and $293 \rightarrow 234$).
Further elution (benzene) gave methyl 4-cyano-1,5-di-hydro-1-methoxycarbonylmethyl-5-(trans-2-methoxycarbonyl-vinyl)pyrido[1,2-a]benzimidazole-2-carboxylate (5) (400 mg , $2 \cdot 6 \%$), irregular yellow crystals (from methanol), m.p. 159-160 (Found: C, $61 \cdot 4 ; \mathrm{H}, 4 \cdot 6$; N, 10.1. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires $C, 61 \cdot 6 ; \mathrm{H}, 4 \cdot 7 ; \mathrm{N}, 10 \cdot 3 \%$), $\nu_{\text {max. }} 2200,1733,1723$, $1671,1664,1625$, and $1609 \mathrm{~cm}^{-1}$.

Elution of the next yellow band with benzene-ether ($4: 1 \mathrm{v} / \mathrm{v}$) gave an unidentified compound (600 mg), crystals (from methanol), m.p. 266-267.5 ${ }^{\circ}$ (Found: C, 63.3; H, $4 \cdot 6 ; \mathrm{N}, 14.7$. Calc. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{6}$: C, $63.6 ; \mathrm{H}, 4 \cdot 6 ; \mathrm{N}$, $14.8 \%)$, $\nu_{\text {max. }} 1751,1743,1728,1516 \mathrm{w}, 1445,1434$, and $1420 \mathrm{w} \mathrm{cm}^{-1}, \lambda_{\max }(\mathrm{MeOH}) 213\left(10^{-4} \varepsilon 8 \cdot 36\right), 259(2 \cdot 76), 270$ (2.07), $277(2 \cdot 15)$, and $286 \mathrm{~nm}(1 \cdot 78) ; \lambda_{\text {max. }}$ (MeOH-HCl) $212\left(10^{-4} \varepsilon 6 \cdot 90\right), 260(2 \cdot 33), 271(2 \cdot 29), 278(2 \cdot 58)$, and 286 nm (2.15); $\tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.0-2.3\left(\mathrm{~m}, \mathrm{ArH}_{2}\right), 2.3-2.8(\mathrm{~m}$, $\left.\mathrm{ArH}_{6}\right), 4 \cdot 2-4 \cdot 4(2 \mathrm{H}, \mathrm{m}), 4 \cdot 3-4 \cdot 6(1 \mathrm{H}, \mathrm{m}), 4 \cdot 6-5 \cdot 0(1 \mathrm{H}$, $\mathrm{m}), 5 \cdot 0-7 \cdot 2(5 \mathrm{H}, \mathrm{m})$, and $6 \cdot 21,6 \cdot 26$, and $6 \cdot 80(9 \mathrm{H}, 3 \times \mathrm{Me})$; $m / e 566\left(M^{+}, 28 \%\right), 535(12 \cdot 2), 507$ (100), 493 (20), and $326(34), m^{*} 507$ and $473(566 \longrightarrow 535$ and $566 \longrightarrow 507)$.

Further elution gave the pyridobenzimidazole (15) (800 mg).

1-Methylbenzimidazole-2-acetonitrile with Methyl Pro-piolate.-The nitrile (1.2 g), methyl propiolate ($1.8 \mathrm{~g}, 3 \mathrm{~mol}$. equiv.), and acetonitrile (50 ml) were refluxed for 8 days and chromatographed. Elution [light petroleum-benzene (3:1 v/v)] gave trimethyl benzene-1,3,5-tricarboxylate (150 mg), m.p. $138-140^{\circ}$ (lit., ${ }^{28} 144^{\circ}$), identified by mixed m.p.

Elution with benzene-ether ($5: 1 \mathrm{v} / \mathrm{v}$) gave methyl 4-cyano-1,5-dihydro-1-methoxycarbonylmethyl-5-methylpyrido [1,2-a]benzimidazole-2-carboxylate (7) ($450 \mathrm{mg}, 19 \%$), yellow matted rods (from methanol), m.p. 171.5-172.5 ${ }^{\circ}$ (Found: C, $63.9 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 12 \cdot 3 . \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, $63.7 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 12.4 \%$), $\nu_{\max } 2190,1748,1669$, and $1630 \mathrm{~cm}^{-1}, m / e 339\left(M^{+}, 6 \cdot 2 \%\right)$ and $266\left(M-\mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Me}\right.$, 100).

Benzimidazole-2-acetonitvile with Dimethyl Acetylenedi-carboxylate.-The nitrile (16 g) and the ester (32 g) were refluxed in acetonitrile (500 ml) for 24 h and chromatographed. Elution with benzene gave hexamethyl 4-cyano-1,2,3,3a-tetrahydrodipyrrolo[1,2-a : $1^{\prime}, 2^{\prime}$-c $] q u i n o x a l i n e-~$
1,2,3,3a,5,6-hexacarboxylate (36) ($2 \cdot 1 \mathrm{~g}, 5 \%$), rectangular plates (from methanol), m.p. 256-259 ${ }^{\circ}$ (decomp.) (Found: $\mathrm{C}, 55 \cdot 9 ; \mathrm{H}, 4.5 ; \mathrm{N}, 7 \cdot 1 . \quad \mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{12}$ requires $\mathrm{C}, 55 \cdot 6$; $\mathrm{H}, 4 \cdot 3 ; \mathrm{N}, 7 \cdot 2 \%$), $\nu_{\text {max }} 2254 \mathrm{w}, 1775,1747,1736$, and $1646 \mathrm{~cm}^{-1}, m / e 583\left(M^{+}, 62 \%\right), 524\left(M-\mathrm{CO}_{2} \mathrm{Me}, 49\right)$, and $480\left(M-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{CO}_{2}, 100\right) ; m^{*} 472$ and $440(583 \longrightarrow 524$ and $524 \longrightarrow 480$).

Elution with ether gave oils (2.5 g) and then elution with ether-chloroform ($1: 1 \mathrm{v} / \mathrm{v}$) gave methyl 4 -cyano-3,5-dihydro-3-oxopyrido[1,2-a]benzimidazole-1-carboxylate (16) (1.42 g , $\mathbf{4 . 9} \%$). parallelipipeds (from methanol), m.p. 255-256 ${ }^{\circ}$
(decomp.) (Found: $\mathrm{C}, 62.5$; $\mathrm{H}, 3.5$; $\mathrm{N}, 15.5 . \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 62.9 ; \mathrm{H}, 3.4 ; \mathrm{N}, 15 \cdot 7 \%$), $\nu_{\text {max. }} 3250-2500,2220$, 1736, 1668, and $1614 \mathrm{w} \mathrm{cm}^{-1}$; m/e $267\left(M^{+}, 100 \%\right), 239$ $(M-\mathrm{CO}, 13), 236(M-\mathrm{OMe}, 10)$, and $208\left(M-\mathrm{CO}_{2} \mathrm{Me}\right.$, $20) ; m^{*} 214$ and $208(267 \longrightarrow 239$ and $267 \longrightarrow 236)$.

Elution with chloroform-methanol ($1: 1 \mathrm{v} / \mathrm{v}$) gave tetramethyl 6-cyano-9,10-dihydro-5H-azepino[1,2-a]benzimid-azole-7,8,9,10-tetracarboxylate (24) ($1.93 \mathrm{~g}, 4 \%$), pale yellow crystals (from methanol), m.p. 253-255 ${ }^{\circ}$ (decomp.) (Found: C, $57.0 ; \mathrm{H}, 4.4 ; \mathrm{N}, 9.5 . \quad \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C. $57 \cdot 1 ; \mathrm{H}, 4 \cdot 3 ; \mathrm{N}, 9.5 \%$), $\nu_{\text {max }} 3300-3000,2200,1755,1743$, 1691 infl , and $1685 \mathrm{~cm}^{-1}, m / e 441\left(M^{+}, 60 \%\right), 410(M-\mathrm{OMe}$, 90), $382\left(M-\mathrm{CO}_{2} \mathrm{Me}, 100\right), 350\left(M-\mathrm{CO}_{2} \mathrm{Me}-\mathrm{MeOH}\right.$, 60), $324(22)$, and $323\left(M-2 \mathrm{CO}_{2} \mathrm{Me}, 29\right)$; $m^{*} 381,332$, and $301(441 \longrightarrow 410,441 \longrightarrow 382$, and $350 \longrightarrow 324$).

1-Methylbenzimidazole-2-acetonitrile with Dimethyl Acetylenedicarboxylate.-The nitrile ($2 \cdot 1 \mathrm{~g}$), the ester (3.5 g), and acetonitrile (150 ml) were refluxed for 3 days and chromatographed. Elution with light petroleum-benzene ($2: 1 \mathrm{v} / \mathrm{v}$) gave a red mixture (100 mg), m.p. $110-160^{\circ}$, followed by a mixture of two compounds which was fractionally recrystallised from methanol. The less soluble component was trimethyl 4-cyano-1,5-dihydro-1-methoxy-carbonylmethyl-5-methylpyrido [1,2-a]benzimidazole-1,2,3-tricarboxylate (8) ($600 \mathrm{mg}, 10.7 \%$), yellow crystals, m.p. $213.5-215.5^{\circ}$ (Found: C, $58.0 ; \mathrm{H}, 4.7 ; \mathrm{N}, 9.2$. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C, $58.0 ; \mathrm{H}, 4 \cdot 7$; $\mathrm{N}, 9.2 \%$), $\nu_{\text {max. }}$ 2192, $1742,1717,1664$, and $1626 \mathrm{w} \mathrm{cm}{ }^{-1}$; m/e $455\left(M^{+}, 5 \%\right), 396$ ($M-\mathrm{CO}_{2} \mathrm{Me}, 100$), $382\left(M-\mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Me}, 18\right)$, and 364 (7); $m^{*} 345$ and $335(455 \longrightarrow 396$ and $396 \longrightarrow 364)$.

The more soluble component was tetramethyl 10-cyano-9,10-dihydro-5-methyl-5H-azepino[1,2-a]benzimidazole-
6,7,8,9-tetracarboxylate (26) ($260 \mathrm{mg}, 4.7 \%$), rods (from methanol), m.p. $184-185^{\circ}$ (Found: C, 57.8 ; H, 4.8 ; N, $9 \cdot 0 . \quad \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires $\mathrm{C}, 58 \cdot 0 ; \mathrm{H}, 4.7 ; \mathrm{N}, 9 \cdot 2 \%$), $\nu_{\max }$ $2250 \mathrm{w}, 1770,1738,1729,1683$, and $1619 \mathrm{~cm}^{-1}$; $m / e 455$ $\left(M^{+}, 2 \cdot 6 \%\right), 344\left(M-\mathrm{HC} \cdot \mathrm{CN}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Me}, 100\right)$, and 313 (M - $\mathrm{HC} \cdot \mathrm{CN}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Me}-\mathrm{OMe}, 20$).

Ethyl Benzimidazole-2-acetates with Methyl Propiolate.Ethyl benzimidazole-2-acetate (10 g) and methyl propiolate ($8.5 \mathrm{~g}, 2 \mathrm{~mol}$. equiv.) were refluxed in acetonitrile (150 ml) for 10 days. Evaporation of the solvent and trituration with benzene gave methyl 3,5-dihydro-5-(trans-2-methoxy-carbonylvinyl)-3-oxopyrido [1,2-a]benzimidazole-2-carboxylate (17) (1.0 g), rods (from methanol), m.p. 260° (decomp.) (Found: C, 62.4; H, 4.2; N, 8.3. $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 62 \cdot 6 ; \mathrm{H}, 4 \cdot 3 ; \mathrm{N}, 8 \cdot 6 \%$), $\nu_{\text {max }} 1740,1707$, and $1649 \mathrm{~cm}^{-1}$.

Chromatography of the remaining material and elution with light petroleum-benzene ($3: 1 \mathrm{v} / \mathrm{v}$) gave trimethyl benzene- $1,3,5$-tricarboxylate (400 mg).

Elution with light petroleum-benzene ($3: 2 \mathrm{v} / \mathrm{v}$) gave 1,3-bis-(trans-2-methoxycarbonylvinyl)-1H-benzimidazol$2(3 \mathrm{H})$-one (33) ($160 \mathrm{mg}, \mathrm{l} \cdot 3 \%$), needles (from methanol), m.p. 179-180 (Found: C, $59 \cdot 1$; H, $4 \cdot 6 ; \mathrm{N}, 9 \cdot 1$. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires C, $59.6 ; \mathrm{H}, 4 \cdot 7 ; \mathrm{N}, 9.3 \%$); $\nu_{\text {max. }}$ 1753, 1724, 1644, and $1610 \mathrm{~cm}^{-1}$; $m / e 302\left(M^{+}, 100 \%\right), 287$ $(M-\mathrm{Me}, 5 \cdot 3), 271(M-\mathrm{OMe}, 47), 243\left(M-\mathrm{CO}_{2} \mathrm{Me}\right.$, 30), 239 ($M-\mathrm{OMe}-\mathrm{MeOH}, 18$), and $215\left(M-\mathrm{CO}_{2} \mathrm{Me}-\right.$ CO, $1 \cdot 5), m^{*} 272,243,195 \cdot 5$, and $190(302 \longrightarrow 287,302 \longrightarrow$ $271,302 \longrightarrow 243$, and $243 \longrightarrow 215$).

Similarly ethyl l-methylbenzimidazole-2-acetate ($3 \cdot 4 \mathrm{~g}$) and methyl propiolate ($4 \cdot 2 \mathrm{~g}$) gave methyl 3,5-dihydro-5-methyl-3-oxopyrido [1,2-a]benzimidazole-2-carboxylate
${ }^{28}$ H. von Pechmann, Annalen, 1891, 264, 296.
($620 \mathrm{mg}, 13 \%$), rods (from methanol), m.p. 292-293 ${ }^{\circ}$ (decomp.) (sublimation above 260°) (Found: C, 65.4; H, $4.9 ; \mathrm{N}, 10 \cdot 8 . \quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 65 \cdot 6 ; \mathrm{H}, 4.7 ; \mathrm{N}$, $10.9 \%), \nu_{\text {max. }} 1703,1655$, and $1620 \mathrm{~cm}^{-1}$, and subsequent chromatography yielded trimethyl benzene-1,3,5-tricarboxylate (190 mg) and methyl 4-ethoxycarbonyl-1,5-dihydro-1-methoxycarbonylmethyl-5-methylpyrido $[1,2-\mathrm{a}]$ benz-imidazole-2-carboxylate (9) (1-36 g), yellow rods (from methanol), m.p. 172-174 ${ }^{\circ}$ (Found: C, 61.7; H, 5.8; N, $7 \cdot 3 . \quad \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\left.\mathrm{C}, 62 \cdot 2 ; \mathrm{H}, 5 \cdot 7 ; \mathrm{N}, 7 \cdot 3 \%\right)$, $\nu_{\text {max. }}$ 1747, 1683 infl, 1662 , and $1616 \mathrm{~cm}^{-1}$.

Ethyl Benzimidazole-2-acetate with Dimethyl Acetylene-dicarboxylate.-Ethyl benzimidazole-2-acetate ($1 \cdot 7 \mathrm{~g}$) and dimethyl acetylenedicarboxylate ($2 \cdot 6 \mathrm{~g}, 2 \mathrm{~mol}$. equiv.) were refluxed in acetonitrile (100 ml) for 2 days. Chromatography and elution with benzene-ether ($2: 1 \mathrm{v} / \mathrm{v}$), gave hexamethyl 4-ethoxycarbonyl-1,2,3,3a-tetrahydrodipyrrolo-[1,2-a : $1^{\prime}, 2^{\prime}$-c] quinoxaline-1,2,3,3a,5,6-hexacarboxylate (37) ($230 \mathrm{mg}, 6.6 \%$), prisms (from methanol), m.p. $248-250^{\circ}$ (decomp.) (Found: $\mathrm{C}, 55 \cdot 4 ; \mathrm{H}, 5 \cdot 0 ; \mathrm{N}, 4 \cdot 6 . \quad \mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{14}$ requires $\mathrm{C}, 55 \cdot 2 ; \mathrm{H}, 4.8 ; \mathrm{N}, 4.5 \%$), $\nu_{\text {max. }} 1764,1752,1734$, and $1648 \mathrm{~cm}^{-1}$; $m / e 630\left(M^{+}, 100 \%\right), 599(M-\mathrm{OMe}, 3 \cdot 5)$, $586\left(M-\mathrm{CO}_{2}, 5\right), 571\left(M-\mathrm{CO}_{2} \mathrm{Me}, 90\right), 527(M-$ $\mathrm{CO}_{2} \mathrm{Me}-\mathrm{CO}_{2}, 30$), and 499 (35), $m^{*} 570,545,517,486$, and $473 \quad(630 \longrightarrow 599, \quad 630 \longrightarrow 586, \quad 630 \longrightarrow 571$, $571 \longrightarrow 527$, and $527 \longrightarrow 499$).
Elution with benzene-ether ($1: 2 \mathrm{v} / \mathrm{v}$) gave trimethyl 4-ethoxycarbonyl-1,5-dihydro-1-methoxycarbonylmethylpyrido-[1,2-a]benzimidazole-1,2,3-tricarboxylate (6) ($320 \mathrm{mg}, 7 \cdot 8 \%$), yellow parallelipipeds (from methanol), m.p. 212-213 ${ }^{\circ}$
(decomp.) (Found: C, $57 \cdot 0 ; \mathrm{H}, 4 \cdot 8 ; \mathrm{N}, 5 \cdot 6 . \quad \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{10}$ requires $\mathrm{C}, 56.6 ; \mathrm{H}, 4.9 ; \mathrm{N}, 5 \cdot 7 \%$), $\nu_{\text {max }} 3255,1753,1742$, $1709,1660,1624$, and $1596 \mathrm{~cm}^{-1}$; $m / e 485\left(M^{+}, 9 \%\right), 454$ $(M-\mathrm{OMe}, 3 \cdot 3), 426\left(M-\mathrm{CO}_{2} \mathrm{Me}, 100\right)$, and $412(M-$ $\mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Me}, 12$), $m^{*} 425 \cdot 5,375$, and $342(485 \longrightarrow 454$, $485 \longrightarrow 426$, and $485 \longrightarrow 412$).

Ethyl 1-Methylbenzimidazole-2-acetate with Dimethyl Acetylenedicarboxylate.-The esters (2.8 and $5 \cdot 6 \mathrm{~g}$ respectively) were refluxed in acetonitrile (70 ml) for 5 days and chromatographed. Elution with benzene gave 3-ethoxycarbonyl-4-methyl-4H-pyrrolo[1,2-a]benzimidazole-1,2dicarboxylate (31) (140 mg), plates (from methanol), m.p. 140° (Found: $\mathrm{C}, 60.4 ; \mathrm{H}, 4.9 ; \mathrm{N}, 7.7 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\mathrm{C}, 60 \cdot 3 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 7.8 \%$), $\nu_{\text {max. }} 1740,1726$, and $1694 \mathrm{~cm}^{-1}$.

Further elution with benzene gave inseparable mixtures but elution with benzene-ether ($5: 1 \mathrm{v} / \mathrm{v}$) gave trimethyl 4-ethoxycarbonyl-1,5-dihydro-1-methoxycarbonylmethyl-5methylpyrido $[1,2-\mathrm{a}]$ benzimidazole-1,2,3-tricarboxylate ($1 \cdot 0 \mathrm{~g}, 15 \cdot 4 \%$), yellow crystals (from methanol), m.p. 146$147^{\circ}$ (Found: C, 57.1; H, 5.2; N, 5.4. $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{10}$ requires $\mathrm{C}, 57 \cdot 4 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}, 5 \cdot 6 \%$), $v_{\text {max. }} 1770,1734,1720$, 1670 , and $1643 \mathrm{~cm}^{-1}, m / e 502\left(M^{+}, 4 \%\right), 443\left(M-\mathrm{CO}_{2} \mathrm{Me}\right.$, 100), $429\left(M-\mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Me}, 30\right)$, and $398 \quad(M-$ $\left.\mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Me}-\mathrm{OMe}, 5 \cdot 6\right), m^{*} 391$ and $367(502 \rightarrow 443$ and $502 \longrightarrow 429$).

We thank Dr. R. G. Bolton for the mass spectra and the S.R.C. for a studentship (to M. S. V.).
[1/2013 Received, 28th October, 1971]

[^0]: \dagger It should be noted that the correct numbering for compounds of types (5), (31), and (38) is as shown in this paper. Compounds (12), (13), (15), and (19)-(22) of Part XXVI [R. M. Acheson, M. W. Foxton, P. J. Abbot, and K. R. Mills, J. Chem. Soc. (C), 1967, 882] and compounds (8) and (15) of Part XXXVI (R. M. Acheson and W. R. Tully, ibid., 1968, 1623) should be numbered as compound (5) in this paper. Compound (14) in Part XXVI should be numbered as compound (31) in this paper. Compound (6) in Part XXXV (R. M. Acheson, M. W. Foxton, and J. K. Stubbs, ibid., p. 926) should be numbered as compound (38) here.

[^1]: ${ }^{1}$ Part XLVIII, R. M. Acheson, J. N. Bridson, T. R. Cecil, and A. R. Hands, preceding paper.
 ${ }^{2}$ R. M. Acheson and W. R. Tully, J. Chem. Soc. (C), 1968, 1623.
 ${ }^{3}$ R. M. Acheson, M. W. Foxton, P. J. Abbott, and K. R. Mills, J. Chem. Soc. (C), 1967, 882.
 ${ }^{4}$ R. M. Acheson, Adv. Heterocyclic Chem., 1963, 1, 125.
 ${ }^{5}$ N. Finch and C. W. Gemenden, J. Org. Chem., 1970, 35, 3114.

[^2]: ${ }^{6}$ L. J. Bellamy, 'The Infrared Spectra of Complex Molecules,' Methuen, London, 1954, p. 264.
 ${ }^{7}$ R. M. Acheson, J. M. F. Gagan, and D. R. Harrison, J. Chem. Soc. (C), 1968, 362.
 ${ }^{8}$ L. J. Bellamy and P. E. Rogasch, Spectrochim. Acta, 1960. 16, 30.

[^3]: ${ }^{9}$ R. M. Acheson and D. A. Robinson, J. Chem. Soc. (C), 1968, 1629.
 ${ }^{10}$ E. Winterfeldt, Chem. Ber., 1965, 98, 3537.
 ${ }_{11}$ R. Mukherjee and A. Chatterjee, Tetrahedron, 1966, 22, 1461.

[^4]: ${ }^{15}$ M. S. Verlander, D.Phil. Thesis, Oxford, 1970 (cat. no. d. 5086), p. 92.
 ${ }^{16}$ J. W. Emsley, J. Feeney, and L. H. Sutcliffe, ' High Resolution N.M.R. Spectroscopy,' Pergamon, London, 1966, p. 846.

[^5]: 17 D. Harrison and A. C. B. Smith, J. Chem. Soc., 1959, 3157.
 ${ }^{18}$ L. S. Efros and A. V. El'tsov, Zhur. obshchei. Khim., 1957, 27, 684.

[^6]: 19 R. M. Acheson, M. W. Foxton, and J. K. Stubbs, J. Chem. Soc. (C), 1968, 926.

[^7]: * $\mathrm{E}=\mathrm{EtOH} ; \quad \mathrm{M}=\mathrm{MeOH} ; \mathrm{MA}=\mathrm{MeOH}$ acidified with 3 drops of 72% perchloric acid; $\mathrm{P}=\mathrm{MeOH}-72 \%$ perchloric acid (2:1v/v).

[^8]: \dagger Copies of the thesis can be obtained, without reference to the author, from the Librarian, Radcliffe Science Library, South Parks Road, Oxford, upon payment of the library's standard fees for this work.
 ${ }^{20}$ Ref. 15, p. 33.
 ${ }_{21}$ R. M. Acheson and M. S. Verlander, J. Chem. Soc. (C), 1969, 2311.

 22 A. Hempel, J. prakt. Chem., 1890, 41, 161.
 ${ }_{23}$ J. J. Blanksma, Rec. Trav. chim., 1902, 21, 269.
 ${ }^{24}$ E. L. Martin, Org. Synth., 1943, Coll. Vol. II, p. 501.
 ${ }^{25} \mathrm{H}$. Irving and O. Weber, J. Chem. Soc., 1959, 2296.
 ${ }_{20}$ R. A. B. Copeland and A. R. Day, J. Amer. Chem. Soc., 1943, 65, 1072.
 ${ }_{27}$ W. Ozegowski and D. Krebs, J. prakt. Chem., 1965, 29, 18.

